

CPCI-SyncClock32 Bus-Level Timing Board

The CPCI-SyncClock32 Bus-Level Timing Board provides precision time with zero latency to the host computer over the CPCI bus.

Features

- 32 bit 6U CPCI module
- IRIG A, B, NASA 36, 1 PPS sync inputs
- GPS sync option (maintains single-slot)
- Have Quick sync input option
- Propagation delay correction

Key Benefits

An on-board microprocessor automatically synchronizes the clock to reference signal inputs. The reference signal inputs can be 1 PPS, IRIG or NASA time codes and optionally, GPS or Have Quick. The clock can free run and be set by commands from the host over the CPCI bus.

The on-board clock accepts an IRIG A, B, or NASA 36 input and accepts user input reference input signal delay information. An IRIG B code generator is also included.

The advanced microprocessor on the PCI-SyncClock32 module constantly measures the time error between the onboard clock and the reference input code and adjusts the error measurement for propagation delay. In units with a disciplined TCXO or OCXO the residual error is used in an adaptive gain loop to adjust the frequency of the oscillator for minimum error. If the incoming time code is missing, or corrupted by noise, the on-board clock is updated using the disciplined 10 MHz oscillator. When the input code is again useable the correction loop is smoothly closed.

BCD time data is available to the host computer using two zero latency time reads. The time message contains units of microseconds through units of years. A status word is available using an additional read.

The time-of-occurrence of random external events may be captured (time-tagged) by using the Event Time input. When the event input is sensed the current time is saved in a buffer for later interrogation by the host. The resolution of the time tag is 100 nanoseconds.

- · Zero latency time reads
- Match Time output
- IRIG-B time code output (Option)
- External Event time tags
- Three user programmable rates

Internal or external processes may be automatically initiated or terminated by using the Match Time feature. This feature asserts an output when the clock's time matches that of the user input start time. The output is terminated under user control or when the pre-programmed stop time is encountered. The resolution of the Match Time comparison is one microsecond.

Three user programmable pulse rates are provided. Two pulse rates, Clock Low and Clock High, are available on the multi-pin connector. The third rate generator provides heartbeat timing to the host. The divider for each of the three rate generators is programmable by the host over the range 2–65,535. The inputs to the rate generators are 3 MHz or 100 Hz for the heartbeat, 3 MHz for Clock High and 100 Hz for Clock Low.

The GPS synchronization option adds worldwide time transfer capability that can be traced to the U.S. Government standard UTC-USNO. Very precise synchronization, automatic leap year and leap second correction, and accurate position information are additional benefits provided by the GPS option.

Software packages for Windows 95/98, Windows NT, DOS and VxWorks are available. C language samples are supplied with the CPCI-SyncClock32.

In addition to the comprehensive set of standard capabilities of the CPCI-SyncClock32, we offer a wide range of options that may be specified. These options allow the user to customize the CPCI-SyncClock32 to fit almost any application.

25 Eastways, Witham, Essex, CM8 3AL UK | Tel: +44 (0) 1376 514114

CPCI-SyncClock32 Specifications

General Input Specifications

Input Codes
Input Amplitudo
Input Amplitude
Input Impedance
Ratio
Frequency Error
Code Sync Accuracy
1PPS Input
1PPS Sync Accuracy
External Event
Resolution
Min. event spacing

IRIG A & B, NASA 36 (1kHz Carrier) .25 to 10 Vpp >10k Ohms 2:1 to 6:1 100 PPM maximum One microsecond TTL, positive edge One microsecond TTL, positive or negative edge 100 nanoseconds–units of year None

General Output Specifications

IRIG B DC Shift			TTL (Option)		
Match Pulse			TTL level at Start-Stop time		
	Resolution		Microseconds-eight millisecon	nds	
Clo	ck Low Rate		TTL, negative going	Clock	
Divisor 2-65,535		2–65,535			
	Clock Input		100 PPS		
	Default output		1 PPS		
Clock High Rate			TTL, negative going		
	Clock Divisor		2–65,535		
	Clock Input		3 MPPS		
	Default output		76.923k PPS		
Heartbeat Rate			Interrupt, flag,		
			TTL and negative going		
	Clock Divisor		2–65,535		
	Clock Input		100 PPS or 3 MPPS		
	Default output		1k PPS		
BCI	D Time		Microseconds–unit year on demand, zero latency 58 bits two 32 bit words	in	
Status word			8 bits		
Status LED			Flashes coded patterns		
Inte	errupts		External Event, RAM FIFO, Heartbeat, Match Time		
Flaç	gs		Dual Port RAM data ready, FIF data ready, In sync, Heartbeat Match Time, External Event	=0 :,	
Connectors			BNC. high density DB-26		

Mechanical & Environmental

Size	6U	
Туре	Single-slot 32-bit 5V CPCI	
Power		
+5Vdc	±5%, 400 mA maximum	
+12 Vdc	±5%, 100 mA maximum	
-12Vdc	±5%, 50 mA maximum	
Operating Temperature	0°C to +70°C	
Storage Temperature	-40°C to +85°C	
Humidity	To 95% without condensation	

Options

GPS Sync Input Sync Accuracy Position Accuracy Tracking Antenna Antenna Options Hi-gain Fiber Optic Kit

Differential GPS Inputs IRIG B Modulated Output Input Code Isolation Input Codes

Output codes Eight External Event Inputs Have Quick Input Have Quick Output Binary Time Words Oscillator Upgrades

1 PPS 10 Vdc input STANAG 4430 STANAG 4430 IRIG B D.C. shift time code Software packages C/A code 100 nanoseconds 25 meters SEP Eight parallel channels L1 magnetic mount, 25' cable

L1, mast mount, 100' cable Fiber optic transmitter-receiver pair for long antenna cable runs Per RTCM 104 2.5 Vpp into 600 Ohms Transformer coupling IRIG G, XR3, 2137, IRIG E, 109-60 IRIG A, NASA 36, IRIG G TTL positive or negative edge Per ICD-GPS-060 Per ICD-GPS-060 **Replaces BCD** Disciplined TCXO, 1 PPM Disciplined OCXO, .01 PPM Sync input, +10 Vdc, 50 ohms Time code sync input Time code output TTL Windows NT, 2000 Windows 95/98, Linux